Skip to content

我查这么多数据,会不会把数据库内存打爆?

最近被问到这样一个问题:我的主机内存只有100G,现在要对一个200G的大表做全表扫描,会不会把数据库主机的内存用光了?

顿时有点无语,很明显不会啊,MySQL 逻辑备份就是做整库扫描,如果这样就会把内存吃光,逻辑备份不是早就挂了,那为什么不会打爆呢?

全表扫描对server层的影响

假设,我们现在要对一个200G的InnoDB表db1. t,执行一个全表扫描。当然,你要把扫描结果保存在客户端,会使用类似这样的命令:

plsql
select * from db1.t > $target_file

InnoDB的整行数据是保存在主键索引上的,所以全表扫描实际上是直接扫描表t的主键索引。这条查询语句由于没有其他的判断条件,所以查到的每一行都可以直接放到结果集里面,然后返回给客户端。

那么,这个“结果集”存在哪里呢?

实际上,服务端并不需要保存一个完整的结果集。取数据和发数据的流程是这样的:

  1. 获取一行,写到net_buffer中。这块内存的大小是由参数net_buffer_length定义的,默认是16k。
  2. 重复获取行,直到net_buffer写满,调用网络接口发出去。
  3. 如果发送成功,就清空net_buffer,然后继续取下一行,并写入net_buffer。
  4. 如果发送函数返回EAGAIN或WSAEWOULDBLOCK,就表示本地网络栈(socket send buffer)写满了,进入等待。直到网络栈重新可写,再继续发送。

20251206233407bbc7ee7d6.jpeg

从这个流程中,你可以看到:

  1. 一个查询在发送过程中,占用的MySQL内部的内存最大就是net_buffer_length这么大,并不会达到200G;
  2. socket send buffer 也不可能达到200G(默认定义/proc/sys/net/core/wmem_default),如果socket send buffer被写满,就会暂停读数据的流程。

也就是说,MySQL是“边读边发的”。这就意味着,如果客户端接收得慢,会导致MySQL服务端由于结果发不出去,这个事务的执行时间变长,但是不会导致数据库内存打爆。

全表扫描对InnoDB的影响

接着来看看,全表查询对innoDB的影响,

内存的数据页是在buffer pool中管理的,在WAL里 buffer pool 起到了加速更新的作用,同时也起到了加速查询。

比如更新了一个SQL,但是由于WAL机制,数据先是写到buffer pool中,然后磁盘的数据还是旧的,如果这个时候来了一个查询,那么就会直接从buffer pool中直接读取数据返回,可以加速读的作用。

可以通过 show engine innodb status 显示当前的命中率。

InnoDB Buffer Pool 的大小是由参数 innodb_buffer_pool_size 确定的,一般建议设置成可用物理内存的 60%~80%。

plsql
show variables like '%innodb_buffer_pool_size%';

但是数据是远远超过物理内存的,这个时候如果一个 Buffer Pool 已经满了,还需要从磁盘读入一个数据页,那肯定是要淘汰一个旧数据页的,所以就有一定的淘汰算法,LRU。

20251206233407f3891239f.jpeg

InnoDB管理Buffer Pool的LRU算法,是用链表来实现的。

  1. 在上图的状态1里,链表头部是P1,表示P1是最近刚刚被访问过的数据页;假设内存里只能放下这么多数据页;
  2. 这时候有一个读请求访问P3,因此变成状态2,P3被移到最前面;
  3. 状态3表示,这次访问的数据页是不存在于链表中的,所以需要在Buffer Pool中新申请一个数据页Px,加到链表头部。但是由于内存已经满了,不能申请新的内存。于是,会清空链表末尾Pm这个数据页的内存,存入Px的内容,然后放到链表头部。
  4. 从效果上看,就是最久没有被访问的数据页Pm,被淘汰了。

这个算法乍一看上去没什么问题,但是如果考虑到要做一个全表扫描,会不会有问题呢?

假设按照这个算法,我们要扫描一个200G的表,而这个表是一个历史数据表,平时没有业务访问它。

那么,按照这个算法扫描的话,就会把当前的Buffer Pool里的数据全部淘汰掉,存入扫描过程中访问到的数据页的内容。也就是说Buffer Pool里面主要放的是这个历史数据表的数据。

对于一个正在做业务服务的库,这可不妙。你会看到,Buffer Pool的内存命中率急剧下降,磁盘压力增加,SQL语句响应变慢。

所以,InnoDB不能直接使用这个LRU算法。实际上,InnoDB对LRU算法做了改进。

202512062334075748f9cdc.png

在InnoDB实现上,按照5:3的比例把整个LRU链表分成了young区域和old区域。图中LRU_old指向的就是old区域的第一个位置,是整个链表的5/8处。也就是说,靠近链表头部的5/8是young区域,靠近链表尾部的3/8是old区域。

改进后的LRU算法执行流程变成了下面这样。

  1. 上图中状态1,要访问数据页P3,由于P3在young区域,因此和优化前的LRU算法一样,将其移到链表头部,变成状态2。
  2. 之后要访问一个新的不存在于当前链表的数据页,这时候依然是淘汰掉数据页Pm,但是新插入的数据页Px,是放在LRU_old处。
  3. 处于old区域的数据页,每次被访问的时候都要做下面这个判断:
    • 若这个数据页在LRU链表中存在的时间超过了1秒,就把它移动到链表头部;
    • 如果这个数据页在LRU链表中存在的时间短于1秒,位置保持不变。1秒这个时间,是由参数innodb_old_blocks_time控制的。其默认值是1000,单位毫秒。

这个策略,就是为了处理类似全表扫描的操作量身定制的。还是以刚刚的扫描200G的历史数据表为例,我们看看改进后的LRU算法的操作逻辑:

  1. 扫描过程中,需要新插入的数据页,都被放到old区域;
  2. 一个数据页里面有多条记录,这个数据页会被多次访问到,但由于是顺序扫描,这个数据页第一次被访问和最后一次被访问的时间间隔不会超过1秒,因此还是会被保留在old区域;
  3. 再继续扫描后续的数据,之前的这个数据页之后也不会再被访问到,于是始终没有机会移到链表头部(也就是young区域),很快就会被淘汰出去。

可以看到,这个策略最大的收益,就是在扫描这个大表的过程中,虽然也用到了Buffer Pool,但是对young区域完全没有影响,从而保证了Buffer Pool响应正常业务的查询命中率。

小结

结论是mysql采用边算边发的策略,查询很大的数据表,不会将内存打爆,而InnoDB引擎内部,有淘汰策略,并且对LRU进行了改进,对Buffer pool做到可控。

更新: 2024-09-24 15:26:55
原文: https://www.yuque.com/tulingzhouyu/db22bv/gyr35qg99cq16zfq